NEW POLYETHER ANTIBIOTICS, A-130B AND A-130C

Sir:

Recently we have found two new antibacterial components A-130B (1) and C (2) in the metabolites of *Streptomyces hygroscopicus* A-130, which produces polyether antibiotic A-130A (3). This antibiotic was isolated and characterized as a new polyether antibiotic by KUBOTA, *et al.*¹⁾ and later isolated also by an American group as Ro 21-6150*, which was identified with our specimen^{2a)}.

Two active minor components, **1** and **2**, found in the mother liquor of **3** were isolated by precise t.l.c. on silica gel. Like **3**, both compounds were easily assumed to be polyether antibiotics having an α , β -unsaturated ketone function from their IR (1655 cm⁻¹) and UV (λ_{max} 235 nm) spectra (Fig. 1). Up to date, two antibiotics, dianemycin⁴) and **3** are known to belong to this class, but both **1** and **2** are distinguishable from these antibiotics by IR and t.l.c.

Antibiotics 1 and 2 did not give any crystals suitable for X-ray analyses, while the ¹³C NMR spectra of their sodium salts (1-Na) and (2-Na) gave valuable information in comparison with

that of 3-Na, whose structure is established by an X-ray diffraction of $3-Ag^{20}$. The ¹³C NMR spectra were examined in C₆D₆ and CDCl₃, and the signals were assigned by the usual procedures including various ¹H decoupling techniques⁵⁾ and comparison with those of sodium salts of A-28695⁶⁾ (septamycin)⁷⁾ (4), K-41A (5)⁸⁾ and B (6)⁹⁾; their ¹³C NMR signals were already assigned^{9,10)}.

As shown in Tables 1 and 2, 1 is composed of 54 carbons while 2 as well as 3 has 47 carbons. The precise comparison of the spectra led to the assumption that 1 has an additional deoxysugar

(Deo) moiety $C_7H_{13}O_3$ like as 6. The presence of two OMe signals in the ¹H NMR spectrum of 1-Na (see Fig. 2) supports the speculation, and the ¹³C signals due to the Deo moiety are easily pointed out as shown in Table 2. The remaining ¹³C signals of 1-Na essentially correspond to those of 3-Na except 7 carbon signals. Marked and slight changes (* and ** in Table 1, respectively) in the ¹³C chemical shifts were exhibited from 3-Na to 1-Na as $-CH_{2-} \rightarrow$ -CH-O- (δ_c 37.2 \rightarrow 82.6), upfield shifts of two Me signals (17.5 and 17.9→12.9 and 14.0, respectively), downfield shifts of two -CH- signals $(36.9 \text{ and } 33.3 \rightarrow 45.4 \text{ and } 40.0, \text{ respectively})$, and slight signal shifts of $-\dot{C}H-O-$ (73.5 \rightarrow 72.8) and $-CH\langle_{\Omega}^{O}$ (99.1 \rightarrow 100.3). Taking account of the structure of 3, these spectral changes can be expected only by locating the second Deo at C-27 (in ring E). Similar changes were also observed between 4-Na and 5-Na (see Table 3). Further, the $\delta_{\rm c}$ values for the Deo moiety at C-27 in 1-Na are in good accordance to those of 5-Na (see Table 2). Therefore, the second Deo of 1 should be situated just as that of 5, and A-130B has been determined as structure 1*. (* next page)

^{*} ANTEUNIS et al., who studied the ¹H NMR spectra of Ro 21-6150 provided by this group, called it lenoremycin³).

Carbon type ^b	Assign- ment ^e	3-Na	1-Na	2 -Na
C-Me (q)	2-Me ^d 4-Me ^d 6-Me 8-Me ^d 12-Me 16-Me 20-Me ^d 22-Me ^d 26-Me 28-Me	20.9 17.7 11.7 14.3 13.9 27.3 15.0 15.3 17.9 17.5	20.8 17.7 11.7 14.2 13.9 27.4 15.1 15.2 14.0* 12.9*	20.9 17.7 11.8 14.3 13.9 27.6 15.1 15.3 18.3** 15.5*
C-CH ₂ -(t)	C-3 C-10 C-14 C-15 C-18 C-19 C-23 C-27	41.9 29.8° 36.0 32.5 17.7 27.6 ^f 36.7 37.2	41.8 29.7° 36.0 32.4 17.7 27.4° 36.7	41.9 29.6° 36.1 32.5 17.7 27.6 ^t 36.8 36.1**
C-CH< (d)	C-2 C-4 C-8 C-12 C-20 C-22 C-26 C-28	39.8 38.4 41.9 39.8 30.4 35.4 33.3 36.9	39.8 38.3 41.8 39.8 30.3 35.4 40.0* 45.4*	39.8 38.4 41.9 39.9 30.4 35.8 26.3* 36.4**
O-CH ₂ - (t)	C-30	64.7	64.6	65.0
O–CH< (d)	C-9 C-11 C-17 C-24 C-25 C-27	68.5 73.5 80.9 79.6 73.5	68.5 73.5 80.9 79.8 72.8** 82.6*	68.4 73.7 81.0 79.6 74.2**
O−C∕ (s)	C-16	85.8	85.9	85.9
$O_O > C < (s)$	C-13 C-21 C-29	109.3 111.1 99.1	109.0 111.3 100.3**	109.1 111.1 98.0**
=CH- (d)	C-7	146.0	145.9	145.8
=C< (s)	C-6	134.5	134.5	134.8
>C=O (s)	C-1 C-5	181.3 205.8	181.6 205.8	181.9 206.0

Table 1. ¹³C Chemical shifts $(\delta)^{a}$ of A-130A-Na (3-Na), A-130B-Na (1-Na) and A-130C-Na (2-Na).

a	¹³ C FT NMR spectra were recorded on a Varian
	XL-100-12A spectrometer at 25.160 MHz in
	C ₆ D ₆ (ca. 0.25 mmol·cm ⁻³) at 35°C; accuracies
	of δ values are ± 0.05 ppm.

- ^b Multiplicities were obtained by ¹H singlefrequency off-resonance decoupling experiments.
- ° δ values of Deo carbons are listed in Table 2.
- ^d Tentative assignments.
- ^e,^f Assignments may be interchanged (for interchangeable signal, see Table 2).
- *, ** See text.

Table 2. ¹³C Chemical shifts $(\delta)^a$ of the deoxysugar (Deo) moieties of A-130A-Na (3-Na), A-130B-Na (1-Na), A-130C-Na (2-Na), and K-41A-Na (5-Na).

Carbon type ^b	Assign- ment	Deo at C-11°			Deo at C-27 ^d	
		3-Na	1-Na	2 -Na	1-Na	5-Na
O O (d)	C-1′	103.3	103.2	103.5	103.2	103.0
$-CH_2-$	C-2′	28.7 ^f	28.6 ^f	28.8 ^f	30.9	31.0
$-CH_{2}-$	C-3′	26.6°	26.5°	26.7º	27.4	27.4
(t) O–CH<	C-4′	79.5	79.5	79.6	80.6	80.6
O-CH	C-5′	76.8	76.7	76.8	74.5	74.7
C-Me(q)	5'-Me	18.6	18.7	18.7	18.7	18.8
O-Me (q)	4'-OMe	56.3	56.3	56.4	56.2	56.2

^a See footnote a in Table 1.

^b See footnote b in Table 1.

- ^e,^d Chemical shift differences found between Deo at C-11 and that at C-27 may be attributable to the environmental difference; Deo at C-11 directly participates in the metal-ion capture in solution¹¹ as well as in crystal²).
- e , c Assignments may be interchanged (for the interchangable signal, see Table 1).

Table 3. Comparison of ¹³C data^a in ring E of 1-Na, 3-Na and in ring F of 4-Na, and 5-Na.

	1-Na	3- Na	$\Delta \delta^{\mathrm{b}}$	5- Na	4- Na	$\Delta \delta^{\mathrm{c}}$
C-25	72.8	73.5	-0.7	74.6	75.7	-0.9
C-26	40.0	33.3	+6.7	39.8	33.2	+6.6
C-27	82.6	37.2	+45.4	82.9	37.5	+45.4
C-28	45.4	36.9	+8.5	48.2	40.5	+7.7
C-29	100.3	99.1	+1.2	98.9	97.4	+1.5
26-Me	14.0	17.9	-3.9	13.8	17.5	-3.7
28-Me	12.9	17.5	-4.6	13.2	17.4	-4.2
29-CH ₂ OH	64.6	64.7	-0.1	-		-
29-Me	-	-		27.2	26.8	+0.4

^a δ values in C₆D₆.

^b Chemical-shift difference; $\Delta \delta = \delta$ (1-Na) $-\delta$ (3-Na).

° Chemical-shift difference; $\Delta \delta = \delta$ (5-Na) $-\delta$ (4-Na).

(p. 94 footnote)

* Molecular peak (1,016) for C₅₄H₈₉O₁₆Na was observed in the EI-MS of 1-Na by Mr. Occolowitz of the Lilly Research Laboratories. Details will be published by him.

As mentioned above, 2 is composed of 47 carbon atoms and the classification of the carbons, shown in Table 1, suggests that 2 should be an isomer of 3. The comparison between the ¹³C spectra of 2-Na and 3-Na revealed chemical-shift changes of 7 carbons which are assigned to those on the E-ring. The changes including a remarkable upfield shift of the C-26 signal (see * and ** in Table 1) can be explained only by the structure in which the 28-Me of 2-Na is epimeric (α -axial conformation) to that of 3-Na. Further, in comparison of the 1H NMR spec-

Fig. 1. IR spectra of sodium salts of A-130B (a) and A-130C (b) in CHCl₃.

Fig. 2. ¹H NMR spectra of sodium salts of A-130B (a) and A-130C (b) in CDCl₃ (at 60 MHz).

trum (in C_6D_6) of **2**-Na to that of **3**-Na, one Me doublet moves downfield by 0.25 ppm and another Me doublet upfield by -0.06 ppm, while the other methyl signals are unchanged. This observation is in good agreement with the conclusion from ¹³C NMR, and A-130C has been assessed to structure **2**.

A-130B is the second example of monovalent diglycoside polyether antibiotic (next to K-41B) according to WESTLEY's classification³⁾ and A-130C is the first example of the polyether antibiotic having an axial methyl group on the "east" terminal ring.

The details of ¹H and ¹³C NMR studies of A-130 factors will be reported elsewhere in the near future¹¹⁾.

Acknowledgments

We thank Dr. R. L. HAMILL of the Lilly Research Laboratories for providing us with the sample of 4-Na for ¹³C NMR measurements.

> Naoki Tsuji* Yoshihiro Terui Kazuo Nagashima Kazuo Tori

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

LEROY F. JOHNSON

Nicolet Technology Corporation 145 E. Dana Street, Mountain View, California, 94041 U.S.A.

(Received October 1, 1979)

References

 KUBOTA, T.; H. HINOH, M. MAYAMA, K. MOTO-KAWA & Y. YASUDA: Antibiotic A-130, isolation and characterization. J. Antibiotics 28: 931~934, 1975

- 2) a) BLOUNT, J. F.; R. H. EVANS, Jr., C.-M. LIU, T. HERMANN & J. W. WESTLEY: X-Ray structure of Ro 21-6150, a polyether antibiotic related to dianemycin. J. Chem. Soc., Chem. Comm.-1975: 853~855, 1975
 b) KOYAMA, H. & K. UTSUMI-ODA: Crystal and molecular structure of a silver salt of antibiotic A-130A. J. Chem. Soc., Perkin II 1977: 1531~1536, 1977
- 3) a) WESTLEY, J. W.: Polyether antibiotics: Versatile carboxylic acid ionophores produced by *Streptomyces*. Adv. Applied Microbiol. 22: 177~223, 1977

b) ANTEUNIS, M. J. O.; N. A. RODIOS & G. VERHEGGE: Solution conformation of dianemycin, its sodium salt and of lenoremycin-Na⁺ (Ro 21-6150 or A-130A). Bull. Soc. Chim. Belg. 86: 609~632, 1977

- HAMILL, R. L.; M. M. HOEHN, G. E. PITTENGER, J. CHAMBERLIN & M. GORMAN: Dianemycin, an antibiotic of the group affecting ion transport. J. Antibiotics 22: 161~164, 1969
- WEHRLI, F. W. & T. WIRTHLIN: Interpretation of carbon-13 NMR spectra. Heyden, London, 1976
- 6) Eli Lilly Co.: U.S. Patent 3839560, 1974
- PETCHER, T. J. & H.-P. WEBER: X-Ray crystal structure and absolute configuration of *p*bromo-phenacylseptamycin monohydrate, a polyether antibiotic. J. Chem. Soc., Chem. Comm. 1974: 697~698, 1974
- SHIRO, M.; H. NAKAI, K. NAGASHIMA & N. TSUJI: X-Ray determination of the structure of the polyether antibiotic K-41. J. Chem. Soc., Chem. Comm. 1978: 682~683, 1978
- TSUJI, N.; K. NAGASHIMA, Y. TERUI & K. TORI: Structure of K-41B, a new diglycoside polyether antibiotic. J. Antibiotics 32: 169~172, 1979
- DORMAN, E. E.; R. L. HAMILL, J. L. OC-COLOWITZ, Y. TERUI, K. TORI & N. TSUJI, to be published
- 11) TERUI, Y.; N. TSUJI, K. NAGASHIMA, K. TORI & L. F. JOHNSON, to be published